SiliconANGLE theCUBESiliconANGLE theCUBE
  • info
  • Transcript
Clip #1 - Andy Thurai on the AI premise
Clip Duration 01:37 / December 29, 2022
Breaking Analysis: AI Goes Mainstream But ROI Remains Elusive
Video Duration: 31:59
search

From theCUBE Studios in Palo Alto in Boston, bringing you data-driven insights from theCUBE and ETR, this is "Breaking Analysis" with Dave Vellante. A decade of big data investments combined with cloud scale, the rise of much more cost effective processing power. And the introduction of advanced tooling has catapulted machine intelligence to the forefront of technology investments. No matter what job you have, your operation will be AI powered within five years and machines may actually even be doing your job. Artificial intelligence is being infused into applications, infrastructure, equipment, and virtually every aspect of our lives. AI is proving to be extremely helpful at things like controlling vehicles, speeding up medical diagnoses, processing language, advancing science, and generally raising the stakes on what it means to apply technology for business advantage. But business value realization has been a challenge for most organizations due to lack of skills, complexity of programming models, immature technology integration, sizable upfront investments, ethical concerns, and lack of business alignment.

Mastering AI technology will not be a requirement for success in our view. However, figuring out how and where to apply AI to your business will be crucial. That means understanding the business case, picking the right technology partner, experimenting in bite-sized chunks, and quickly identifying winners to double down on from an investment standpoint. Hello and welcome to this week's Wiki-bond CUBE Insights powered by ETR. In this breaking analysis, we update you on the state of AI and what it means for the competition. And to do so, we invite into our studios Andy Thurai of Constellation Research. Andy covers AI deeply. He knows the players, he knows the pitfalls of AI investment, and he's a collaborator. Andy, great to have you on the program. Thanks for coming into our CUBE studios. Thanks for having me on. You're very welcome. Okay, let's set the table with a premise and a series of assertions we want to test with Andy. I'm going to lay 'em out. And then Andy, I'd love for you to comment. So, first of all, according to McKinsey, AI adoption has more than doubled since 2017, but only 10% of organizations report seeing significant ROI. That's a BCG and MIT study. And part of that challenge of AI is it requires data, is requires good data, data proficiency, which is not trivial, as you know. Firms that can master both data and AI, we believe are going to have a competitive advantage this decade. Hyperscalers, as we show you dominate AI and ML. We'll show you some data on that. And having said that, there's plenty of room for specialists. They need to partner with the cloud vendors for go to market productivity. And finally, organizations increasingly have to put data and AI at the center of their enterprises.

And to do that, most are going to rely on vendor R&D to leverage AI and ML. In other words, Andy, they're going to buy it and apply it as opposed to build it. What are your thoughts on that setup and that premise? Yeah, I see that a lot happening in the field, right? So first of all, the only 10% of realizing a return on investment. That's so true because we talked about this earlier, the most companies are still in the innovation cycle. So they're trying to innovate and see what they can do to apply. A lot of these times when you look at the solutions, what they come up with or the models they create, the experimentation they do, most times they don't even have a good business case to solve, right? So they just experiment and then they figure it out, "Oh my God, this model is working. Can we do something to solve it?" So it's like you found a hammer and then you're trying to find the needle kind of thing, right? That never works. 'Cause it's cool or whatever it is. It is, right? So that's why, I always advise, when they come to me and ask me things like, "Hey, what's the right way to do it? What is the secret sauce?" And, we talked about this. The first thing I tell them is, "Find out what is the business case that's having the most amount of problems, that that can be solved using some of the AI use cases," right? Not all of them can be solved. Even after you experiment, do the whole nine yards, spend millions of dollars on that, right? And later on you make it efficient only by saving maybe $50,000 for the company or a $100,000 for the company, is it really even worth the experiment, right? So you got to start with the saying that, you know, where's the base for this happening? Where's the need? What's a business use case? It doesn't have to be about cost efficient and saving money in the existing processes. It could be a new thing. You want to bring in a new revenue stream, but figure out what is a business use case, how much money potentially I can make off of that. The same way that start-ups go after. Right? Yeah. Pretty straightforward. All right, let's take a look at where ML and AI fit relative to the other hot sectors of the ETR dataset. This XY graph shows net score spending velocity in the vertical axis and presence in the survey, they call it sector perversion for the October survey, the January survey's in the field. Then that squiggly line on ML/AI represents the progression. Since the January 21 survey, you can see the downward trajectory. And we position ML and AI relative to the other big four hot sectors or big three, including, ML/AI is four. Containers, cloud and RPA. These have consistently performed above that magic 40% red dotted line for most of the past two years. Anything above 40%, we think is highly elevated. And we've just included analytics and big data for context and relevant adjacentness, if you will.

Now note that green arrow moving toward, you know, the 40% mark on ML/AI. I got a glimpse of the January survey, which is in the field. It's got more than a thousand responses already, and it's trending up for the current survey. So Andy, what do you make of this downward trajectory over the past seven quarters and the presumed uptick in the coming months? So one of the things you have to keep in mind is when the pandemic happened, it's about survival mode, right? So when somebody's in a survival mode, what happens, the luxury and the innovations get cut. That's what happens. And this is exactly what happened in the situation. So as you can see in the last seven quarters, which is almost dating back close to pandemic, everybody was trying to keep their operations alive, especially digital operations. How do I keep the lights on? That's the most important thing for them. So while the numbers spent on AI, ML is less overall, I still think the AI ML to spend to sort of like a employee experience or the IT ops, AI ops, ML ops, as we talked about, some of those areas actually went up. There are companies, we talked about it, Atlassian had a lot of platform issues till the amount of money people are spending on that is exorbitant and simply because they are offering the solution that was not available other way.

So there are companies out there, you can take AoPS or incident management for that matter, right? A lot of companies have a digital insurance, they don't know how to properly manage it. How do you find an intern solve it immediately? That's all using AI ML and some of those areas actually growing unbelievable, the companies in that area. So this is a really good point. If you can you bring up that chart again, what Andy's saying is a lot of the companies in the ETR taxonomy that are doing things with AI might not necessarily show up in a granular fashion. And I think the other point I would make is, these are still highly elevated numbers. If you put on like storage and servers, they would read way, way down the list. And, look in the pandemic, we had to deal with work from home, we had to re-architect the network, we had to worry about security. So those are really good points that you made there. Let's, unpack this a little bit and look at the ML AI sector and the ETR data and specifically at the players and get Andy to comment on this. This chart here shows the same x y dimensions, and it just notes some of the players that are specifically have services and products that people spend money on, that CIOs and IT buyers can comment on.

So the table insert shows how the companies are plotted, it's net score, and then the ends in the survey. And Andy, the hyperscalers are dominant, as you can see. You see Databricks there showing strong as a specialist, and then you got to pack a six or seven in there. And then Oracle and IBM, kind of the big whales of yester year are in the mix. And to your point, companies like Salesforce that you mentioned to me offline aren't in that mix, but they do a lot in AI. But what are your takeaways from that data? If you could put the slide back on please. I want to make quick comments on a couple of those. So the first one is, it's surprising other hyperscalers, right? As you and I talked about this earlier, AWS is more about logo blocks. We discussed that, right? Like what? Like a SageMaker as an example. We'll give you all the components what do you need. Whether it's MLOps component or whether it's, CodeWhisperer that we talked about, or a oral platform or data or data, whatever you want. They'll give you the blocks and then you'll build things on top of it, right? But Google took a different way. Matter of fact, if we did those numbers a few years ago, Google would've been number one because they did a lot of work with their acquisition of DeepMind and other things. They're way ahead of the pack when it comes to AI for longest time. Now, I think Microsoft's move of partnering and taking a huge competitor out would open the eyes is unbelievable. You saw that everybody is talking about chat GPI, right? And the open AI tool and ChatGPT rather. Remember as Warren Buffet is saying that, when my laundry lady comes and talk to me about stock market, it's heated up.

So that's how it's heated up. Everybody's using ChatGPT. What that means is at the end of the day is they're creating, it's still in beta, keep in mind. It's not fully... Can you play with it a little bit? I have a little bit. I have, but it's good and it's not good. You know what I mean? Look, so at the end of the day, you take the massive text of all the available text in the world today, mass them all together. And then you ask a question, it's going to basically search through that and figure it out and answer that back. Yes, it's good. But again, as we discussed, if there's no business use case of what problem you're going to solve. This is building hype. But then eventually they'll figure out, for example, all your chats, online chats, could be aided by your AI chat bots, which is already there, which is not there at that level. This could build help that, right? Or the other thing we talked about is one of the areas where I'm more concerned about is that it is able to produce equal enough original text at the level that humans can produce, for example, ChatGPT or the equal enough, the large language transformer can help you write stories as of Shakespeare wrote it.

Pretty close to it. It'll learn from that. So when it comes down to it, talk about creating messages, articles, blogs, especially during political seasons, not necessarily just in US, but anywhere for that matter. If people are able to produce at the emission speed and throw it at the consumers and confuse them, the elections can be won, the governments can be toppled. Because to your point about chatbots is chatbots have obviously, reduced the number of bodies that you need to support chat. But they haven't solved the problem of serving consumers. Most of the chat bots are conditioned response, which of the following best describes your problem? The current chatbot. Yeah. Hey, did we solve your problem? No. Is the answer. So that has some real potential. But if you could bring up that slide again, Ken, I mean you've got the hyperscalers that are dominant. You talked about Google and Microsoft is ubiquitous, they seem to be dominant in every ETR category. But then you have these other specialists. How do those guys compete? And maybe you could even, cite some of the guys that you know, how do they compete with the hyperscalers? What's the key there for like a C3 ai or some of the others that are on there? So I've spoken with at least two of the CEOs of the smaller companies that you have on the list. One of the things they're worried about is that if they continue to operate independently without being part of hyperscaler, either the hyperscalers will develop something to compete against them full scale, or they'll become irrelevant. Because at the end of the day, look, cloud is dominant. Not many companies are going to do like AI modeling and training and deployment the whole nine yards by independent by themselves. They're going to depend on one of the clouds, right? So if they're already going to be in the cloud, by taking them out to come to you, it's going to be extremely difficult issue to solve. So all these companies are going and saying, "You know what? We need to be in hyperscalers." For example, you could have looked at DataRobot recently, they made announcements, Google and AWS, and they are all over the place. So you need to go where the customers are. Right? All right, before we go on, I want to share some other data from ETR and why people adopt AI and get your feedback. So the data historically shows that feature breadth and technical capabilities were the main decision points for AI adoption, historically. What says to me that it's too much focus on technology. In your view, is that changing? Does it have to change? Will it change? Yes. Simple answer is yes. So here's the thing. The data you're speaking from is from previous years. Yes I can guarantee you, if you look at the latest data that's coming in now, those two will be a secondary and tertiary points. The number one would be about ROI. And how do I achieve? I've spent ton of money on all of my experiments. This is the same thing theme I'm seeing across when talking to everybody who's spending money on AI. I've spent so much money on it. When can I get it live in production? How much, how can I quickly get it? Because you know, the board is breathing down their neck. You already spend this much money. Show me something that's valuable. So the ROI is going to become, take it from me, I'm predicting this for 2023, that's going to become number one. Yeah, and if people focus on it, they'll figure it out. Okay. Let's take a look at some of the top players that won, some of the names we just looked at and double click on that and break down their spending profile. So the chart here shows the net score, how net score is calculated. So pay attention to the second set of bars that Databricks, who was pretty prominent on the previous chart. And we've annotated the colors. The lime green is, we're bringing the platform in new. The forest green is, we're going to spend 6% or more relative to last year. And the gray is flat spending. The pinkish is our spending's going to be down on AI and ML, 6% or worse. And the red is churn. So you don't want big red. You subtract the reds from the greens and you get net score, which is shown by those blue dots that you see there.

So AWS has the highest net score and very little churn. I mean, single low single digit churn. But notably, you see Databricks and DataRobot are next in line within Microsoft and Google also, they've got very low churn. Andy, what are your thoughts on this data? So a couple of things that stands out to me. Most of them are in line with my conversation with customers. Couple of them stood out to me on how bad IBM Watson is doing. Yeah, bring that back up if you would. Let's take a look at that. IBM Watson is the far right and the red, that bright red is churning and again, you want low red here. Why do you think that is? Well, so look, IBM has been in the forefront of innovating things for many, many years now, right? And over the course of years we talked about this, they moved from a product innovation centric company into more of a services company. And over the years they were making, as at one point, you know that they were making about majority of that money from services. Now things have changed Arvind has taken over, he came from research. So he's doing a great job of trying to reinvent themselves as a company. But it's going to have a long way to catch up. IBM Watson, if you think about it, that played what, jeopardy and chess years ago, like 15 years ago? It was jaw dropping when you first saw it. And then they weren't able to commercialize that. Yeah. And you're making a good point. When Gerstner took over IBM at the time, John Akers wanted to split the company up. He wanted to have a database company, he wanted to have a storage company. Because that's where the industry trend was, Gerstner said no, he came from AMEX, right? He came from American Express. He said, "No, we're going to have a single throat to choke for the customer." They bought PWC for relatively short money. I think it was $15 billion, completely transformed and I would argue saved IBM. But the trade off was, it sort of took them out of product leadership. And so from Gerstner to Palmisano to Remedi, it was really a services led company. And I think Arvind is really bringing it back to a product company with strong consulting. I mean, that's one of the pillars. And so I think that's, they've got a strong story in data and AI.

They just got to sort of bring it together and better. Bring that chart up one more time. I want to, the other point is Oracle, Oracle sort of has the dominant lock-in for mission critical database and they're sort of applying AI there. But to your point, they're really not an AI company in the sense that they're taking unstructured data and doing sort of new things. It's really about how to make Oracle better, right? Well, you got to remember, Oracle is about database for the structure data. So in yesterday's world, they were dominant database. But you know, if you are to start storing like videos and texts and audio and other things, and then start doing search of vector search and all that, Oracle is not necessarily the database company of choice. And they're strongest thing being apps and building AI into the apps? They are kind of surviving in that area. But again, I wouldn't name them as an AI company, right? But the other thing that that surprised me in that list, what you showed me is yes, AWS is number one. Bring that back up if you would, Ken. AWS is number one as you, it should be. But what what actually caught me by surprise is how DataRobot is holding, you know? I mean, look at that. The either net new addition and or expansion, DataRobot seem to be doing equally well, even better than Microsoft and Google. That surprises me. DataRobot's, and again, this is a function of spending momentum. So remember from the previous chart that Microsoft and Google, much, much larger than DataRobot. DataRobot more niche. But with spending velocity and has always had strong spending velocity, despite some of the recent challenges, organizational challenges. And then you see these other specialists, H2O.ai, Anaconda, dataiku, little bit of red showing there C3.ai. But these again, to stress are the sort of specialists other than obviously the hyperscalers. These are the specialists in AI. All right, so we hit the bigger names in the sector. Now let's take a look at the emerging technology companies. And one of the gems of the ETR dataset is the emerging technology survey. It's called ETS. They used to just do it like twice a year.

It's now run four times a year. I just discovered it kind of mid-2022. And it's exclusively focused on private companies that are potential disruptors, they might be M&A candidates and if they've raised enough money, they could be acquirers of companies as well. So Databricks would be an example. They've made a number of investments in companies. SNEAK would be another good example. Companies that are private, but they're buyers, they hope to go IPO at some point in time. So this chart here, shows the emerging companies in the ML AI sector of the ETR dataset. So the dimensions of this are similar, they're net sentiment on the Y axis and mind share on the X axis. Basically, the ETS study measures awareness on the x axis and intent to do something with, evaluate or implement or not, on that vertical axis.

So it's like net score on the vertical where negatives are subtracted from the positives. And again, mind share is vendor awareness. That's the horizontal axis. Now that inserted table shows net sentiment and the ends in the survey, which informs the position of the dots. And you'll notice we're plotting TensorFlow as well. We know that's not a company, but it's there for reference as open source tooling is an option for customers. And ETR sometimes like to show that as a reference point. Now we've also drawn a line for Databricks to show how relatively dominant they've become in the past 10 ETS surveys and sort of mind share going back to late 2018. And you can see a dozen or so other emerging tech vendors. So Andy, I want you to share your thoughts on these players, who were the ones to watch, name some names. We'll bring that data back up as you as you comment. So Databricks, as you said, remember we talked about how Oracle is not necessarily the database of the choice, you know? So Databricks is kind of trying to solve some of the issue for AI/ML workloads, right? And the problem is also there is no one company that could solve all of the problems. For example, if you look at the names in here, some of them are database names, some of them are platform names, some of them are like MLOps companies like, DataRobot (indistinct) and others. And some of them are like future based companies like, you know, the Techton and stuff. So it's a mix of those sub sectors? It's a mix of those companies. We'll talk to ETR about that. They'd be interested in your input on how to make this more granular and these sub-sectors. You got Hugging Face in here, Which is NLP, yeah. Okay. So your take, are these companies going to get acquired? Are they going to go IPO? Are they going to merge? Well, most of them going to get acquired. My prediction would be most of them will get acquired because look, at the end of the day, hyperscalers need these capabilities, right? So they're going to either create their own, AWS is very good at doing that. They have done a lot of those things. But the other ones, like for particularly Azure, they're going to look at it and saying that, "You know what, it's going to take time for me to build this. Why don't I just go and buy you?" Right? Or or even the smaller players like Oracle or IBM Cloud, this will exist. They might even take a look at them, right? So at the end of the day, a lot of these companies are going to get acquired or merged with others. Yeah. All right, let's wrap with some final thoughts. I'm going to make some comments Andy, and then ask you to dig in here. Look, despite the challenge of leveraging AI, you know, Ken, if you could bring up the next chart. We're not repeating, we're not predicting the AI winter of the 1990s. Machine intelligence. It's a superpower that's going to permeate every aspect of the technology industry. AI and data strategies have to be connected. Leveraging first party data is going to increase AI competitiveness and shorten time to value. Andy, I'd love your thoughts on that. I know you've got some thoughts on governance and AI ethics. You know, we talked about ChatGBT, Deepfakes, help us unpack all these trends. So there's so much information packed up there, right? The AI and data strategy, that's very, very, very important. If you don't have a proper data, people don't realize that AI is, your AI is the morals that you built on, it's predominantly based on the data what you have. It's not, AI cannot predict something that's going to happen without knowing what it is. It need to be trained, it need to understand what is it you're talking about. So 99% of the time you got to have a good data for you to train. So this where I mentioned to you, the problem is a lot of these companies can't afford to collect the real world data because it takes too long, it's too expensive. So a lot of these companies are trying to do the synthetic data way. It has its own set of issues because you can't use all... What's that synthetic data? Explain that. Synthetic data is basically not a real world data, but it's a created or simulated data equal and based on real data. It looks, feels, smells, taste like a real data, but it's not exactly real data, right? This is particularly useful in the financial and healthcare industry for world. So you don't have to, at the end of the day, if you have real data about your and my medical history data, if you redact it, you can still reverse this. It's fairly easy, right? Yeah, yeah. So by creating a synthetic data, there is no correlation between the real data and the synthetic data. So that's part of AI ethics and privacy and, okay. So the synthetic data, the issue with that is that when you're trying to commingle that with that, you can't create models based on just on synthetic data because synthetic data, as I said is artificial data. So basically you're creating artificial models, so you got to blend in properly that that blend is the problem. And you know how much of real data, how much of synthetic data you could use. You got to use judgment between efficiency cost and the time duration stuff. So that's one-- And risk And the risk involved with that. And the secondary issues which we talked about is that when you're creating, okay, you take a business use case, okay, you think about investing things, you build the whole thing out and you're trying to put it out into the market. Most companies that I talk to don't have a proper governance in place. They don't have ethics standards in place. They don't worry about the biases in data, they just go on trying to solve a business case It's wild west. 'Cause that's what they start. It's a wild west! And then at the end of the day when they are close to some legal litigation action or something or something else happens and that's when the Oh Shit! moments happens, right? And then they come in and say, "You know what, how do I fix this?" The governance, security and all of those things, ethics bias, data bias, de-biasing, none of them can be an afterthought. It got to start with the, from the get-go. So you got to start at the beginning saying that, "You know what, I'm going to do all of those AI programs, but before we get into this, we got to set some framework for doing all these things properly." Right? And then the-- Yeah. So let's go back to the key points. I want to bring up the cloud again. Because you got to get cloud right. Getting that right matters in AI to the points that you were making earlier. You can't just be out on an island and hyperscalers, they're going to obviously continue to do well. They get more and more data's going into the cloud and they have the native tools. To your point, in the case of AWS, Microsoft's obviously ubiquitous. Google's got great capabilities here. They've got integrated ecosystems partners that are going to continue to strengthen through the decade. What are your thoughts here? So a couple of things. One is the last mile ML or last mile AI that nobody's talking about. So that need to be attended to. There are lot of players in the market that coming up, when I talk about last mile, I'm talking about after you're done with the experimentation of the model, how fast and quickly and efficiently can you get it to production? So that's production being-- Compressing that time is going to put dollars in your pocket. Exactly. Right. So once, >> If you got it right. If you get it right, of course. So there are, there are a couple of issues with that. Once you figure out that model is working, that's perfect. People don't realize, the moment you decide that moment when the decision is made, it's like a new car. After you purchase the value decreases on a minute basis. Same thing with the models. Once the model is created, you need to be in production right away because it starts losing it value on a seconds minute basis. So issue number one, how fast can I get it over there? So your deployment, you are inferencing efficiently at the edge locations, your optimization, your security, all of this is at issue. But you know what is more important than that in the last mile? You keep the model up, you continue to work on, again, going back to the car analogy, at one point you got to figure out your car is costing more than to operate. So you got to get a new car, right? And that's the same thing with the models as well.

If your model has reached a stage, it is actually a potential risk for your operation. To give you an idea, if Uber has a model, the first time when you get a car from going from point A to B cost you $60. If the model decayed the next time I might give you a $40 rate, I would take it definitely. But it's lost for the company. The business risk associated with operating on a bad model, you should realize it immediately, pull the model out, retrain it, redeploy it. That's is key. And that's got to be huge in security model recency and security to the extent that you can get real time is big. I mean you, you see Palo Alto, CrowdStrike, a lot of other security companies are injecting AI. Again, they won't show up in the ETR ML/AI taxonomy per se as a pure play. But ServiceNow is another company that you have have mentioned to me, offline. AI is just getting embedded everywhere. Yep. And then I'm glad you brought up, kind of real-time inferencing 'cause a lot of the modeling, if we can go back to the last point that we're going to make, a lot of the AI today is modeling done in the cloud. The last point we wanted to make here, I'd love to get your thoughts on this, is real-time AI inferencing for instance at the edge is going to become increasingly important for us. It's going to usher in new economics, new types of silicon, particularly arm-based. We've covered that a lot on "Breaking Analysis", new tooling, new companies and that could disrupt the sort of cloud model if new economics emerge. 'Cause cloud obviously very centralized, they're trying to decentralize it. But over the course of this decade we could see some real disruption there. Andy, give us your final thoughts on that. Yes and no. I mean at the end of the day, cloud is kind of centralized now, but a lot of this companies including, AWS is kind of trying to decentralize that by putting their own sub-centers and edge locations. Local zones, outposts. Yeah, exactly. Particularly the outpost concept. And if it can even become like a micro center and stuff, it won't go to the localized level of, I go to a single IOT level. But again, the cloud extends itself to that level. So if there is an opportunity need for it, the hyperscalers will figure out a way to fit that model. So I wouldn't too much worry about that, about deployment and where to have it and what to do with that. But you know, figure out the right business use case, get the right data, get the ethics and governance place and make sure they get it to production and make sure you pull the model out when it's not operating well. Excellent advice. Andy, I got to thank you for coming into the studio today, helping us with this "Breaking Analysis" segment. Outstanding collaboration and insights and input in today's episode. Hope we can do more. Thank you. Thanks for having me. I appreciate it. You're very welcome. All right. I want to thank Alex Marson who's on production and manages the podcast. Ken Schiffman as well. Kristen Martin and Cheryl Knight helped get the word out on social media and our newsletters. And Rob Hoof is our editor-in-chief over at Silicon Angle. He does some great editing for us. Thank you all. Remember all these episodes are available as podcast. Wherever you listen, all you got to do is search "Breaking Analysis" podcast. I publish each week on wikibon.com and silicon angle.com or you can email me at david.vellante@siliconangle.com to get in touch, or DM me at dvellante or comment on our LinkedIn posts. Please check out ETR.AI for the best survey data and the enterprise tech business, Constellation Research. Andy publishes there some awesome information on AI and data. This is Dave Vellante for theCUBE Insights powered by ETR. Thanks for watching everybody and we'll see you next time on "Breaking Analysis". (gentle closing tune plays)